
Comments?
Like PDK at www.
facebook.com/pdkintl

V95 N1 kappanmagazine.org 61
Thinkstock/iStockphoto

 R&D appears in each issue of Kappan

with the assistance of the Deans’

Alliance, which is composed of the

deans of the education schools/

colleges at the following universities:

Harvard University, Michigan State

University, Northwestern University,

Stanford University, Teachers College

Columbia University, University of

California, Berkeley, University of

California, Los Angeles, University of

Michigan, University of Pennsylvania,

and University of Wisconsin.

YASMIN B. KAFAI (kafai@upenn.edu) is a professor of learning sciences at the Graduate School of Edu-
cation, University of Pennsylvania, Philadelphia, Penn., with a secondary appointment in the Department
of Computer and Information Science. QUINN BURKE (burkeqq@cofc.edu) is an assistant professor of
education technology at the College of Charleston and a former high school teacher. Kafai and Burke are
authors of the forthcoming book Connected Code (MIT Press, 2014).

W
e are witnessing a remarkable comeback of computer programming
in schools. In the 1980s, many schools featured Basic, Logo, or Pas-
cal programming computer labs that students typically visited once
a week as an introduction to the discipline. But, by the mid-1990s,
schools had largely turned away from programming. In large part,
such decline stemmed from a lack of subject-matter integration and

a dearth of qualifi ed instructors. Yet there was also the question of purpose. With the rise
of preassembled multimedia packages via glossy CD-ROMs over the 1990s, who wanted
to toil over syntax typos and debugging problems by creating these applications oneself?
This question alone seemingly negated the need to learn programming in school, com-
pounded by the excitement generated by the Internet. Schools started teaching students
how to best surf the web rather than how to delve into it and understand how it actually

Computer programming
goes back to school
Learning programming introduces students to solving problems, designing
applications, and making connections online.

 By Yasmin B. Kafai & Quinn Burke

62 Kappan September 2013

other and the greater whole, and then devise algo-
rithms to arrive at an automated solution. Computa-
tional thinking isn’t limited to mathematics and the
sciences but also applies to the humanities in fields
such as journalism and literature.

Thinking like a computer scientist has the poten-
tial to better articulate and advance other academic
disciplines. But how is computational thinking
present and relevant in everyday life? Wing pro-
vides several examples. Consider cleaning up and
sorting Lego brick pieces. If a child sorts the pieces
as “all rectangular thick blocks in one bin,” “all thin
ones in another,” and so on, computer scientists
would call this hashing. Of course, most children
(and adults) clean up heaps of Legos simply by just
dumping them in one big bucket. But imagine if the
child wanted to build a bigger project with Legos
and needed to construct the project by selecting
particular pieces in a set sequence. Looking through
a large pile of Lego bricks each and every time
would take far longer than looking through bricks
organized by size, shape, and even color. Establish-
ing these categories would reduce search time and
let the builder concentrate on what he or she wanted
to do in the first place: build, not search. That would
be especially helpful when building more ambitious
and precise structures.

Wing’s definition of computational thinking pro-
voked a wide-ranging response among computer sci-
entists and educators concerning what qualifies as
digital literacy. What does computational thinking
contribute to reasoning and communicating in an
ever-increasingly digital world? To what extent do

works. Schools largely forgot about programming,
some deeming it entirely unnecessary and others la-
beling it too difficult to teach and learn.

But this is changing. In the past five years, we’ve
seen a newfound interest in bringing back learning
and teaching programming on all K-12 levels. But
it’s digitally based youth cultures, not schools, lead-
ing this revival (Kafai & Peppler, 2011). Computers
seem to be accessible everywhere, particularly out-
side school, where children and youth are innovat-
ing with technology — often with hand-held devices
— to create their own video games, interactive art
projects, and even their own programmable clothes
through electronic textiles. What’s more, the same
computers on which they create these items connect
them to wider networks of other young users who
share common interests and a similar commitment
to connecting through making.

Schools may very well take a page from these
informal communities of creative production and
networked participation. After all, despite this
surge of interconnected youth communities, very
few youth are using their smart devices — laptop,
iPad, iPhone, or Droid — for something other than
the mass consumption of commercial media. These
digital natives may be able to technically manipu-
late the latest devices, but their capacity to wield
such devices critically, creatively, and selectively is
decidedly less potent.

What then is the role of programming in facilitat-
ing more productive use of technology? And what is
the role of schools in introducing programming to a
wider array of youth, particularly given schools’ own
aborted attempts to teach coding in the past? How
will schools address challenges of diversity and eq-
uity so prevalent in computing culture? Given these
questions facing education as well as the economic
viability of this country, we must first understand
what computational thinking is, how we can teach
it, and why the computational participation of online
communities and traditional schools together offers
new opportunities to engage students.

What is computational thinking?

In 2006, Carnegie Mellon professor Jeannette
Wing defined computational thinking as all “aspects
of designing systems, solving problems, and under-
standing human behaviors” (2006, p. 6). Wing ar-
gued that understanding the world computationally
gives a particular lens to understanding problems
and contributing to their solutions. Computational
thinking — while often strictly associated with com-
puter science — actually is better understood as ex-
tending computer science principles to other disci-
plines in order to help break down the elements of
any problem, determine their relationship to each

62 Kappan September 2013

An example of Scratch coding

Scratch is developed by the Lifelong Kindergarten Group at the
MIT Media Lab. See http://scratch.mit.edu

V95 N1 kappanmagazine.org 63

#1. A shift from code to applications.

Rather than coding exercises for learning about
algorithms and data structures, children now learn
programming to create specifi c applications, be
they video games or interactive stories. They are
engaged by the potential to create something real
and tangible that can be shared with others, con-
verting the learning of programming — at least ini-
tially — from the study of an abstract discipline to
a way of making and being in the world digitally.

#2. A shift from tools to communities.

Happily, the past decade has seen the develop-
ment of many admirable introductory program-
ming languages that have made coding a more in-
tuitive, personal process. Scratch (http://scratch.
mit.edu) and Alice (http://alice.org) are two pri-
mary examples. But developers are realizing that
tools alone are not enough. Every tool needs an
audience and the opportunity to bring like-minded
creators together via the Internet. Accordingly,
tools like Scratch and Alice now have extensive
online communities of millions of young users. The
latest version of Scratch — version 2.0 released
this past spring — actually now exists entirely
online so children can program and share from a
single web site, tacitly highlighting the fact that the
community of practice effectively has become the
key tool for learning to code.

#3. A shift from creating “from scratch” to
creating via “remix.”

Programming is no longer an individual activity in
which source code is hidden and closely guarded.
In the spirit of the open-source movement, there
is an increasing push to share one’s underlying
code and encourage participants to sample oth-
ers’ creations for the sake of adjusting and add-
ing to them. With the idea that such openness
heightens the potential for innovation, young us-
ers embrace sampling and sharing more freely,
challenging the traditional top-down paradigm
characteristic of computer science and of schools
in general.

Broadly speaking, we view the three aforemen-
tioned shifts as a social turn, moving from a pre-
dominantly individualistic view of technology to one
that includes a greater focus on the underlying socio-
logical and cultural dimensions in learning program-
ming and reconceptualizing computational thinking
as computational participation.

schools encourage systematic problem solving across
disciplines, breaking down problems and processes
to determine relationships before reassembling?
These aren’t necessarily new questions for schools
(Grover & Pea, 2013). Although computers have
been in schools for 30 years, computational thinking
hasn’t become part of the curriculum. Teaching word
processing and how to create PowerPoint presenta-
tions don’t engage students in the deeper analysis
needed to think more creatively and critically (Col-
lins & Halverson, 2009). Most youth have no or very
little conception of computer science as a discipline
or how it could apply to their daily lives. In short, stu-
dents need to know not only more about computer
science but what it ultimately means to think more
systematically in order to more effi ciently solve all
types of problems.

Teaching computational thinking

So what could computational thinking look like
in schools? How could we teach it? The defi nition of
computational thinking as designing systems, solv-
ing problems, and understanding human behaviors
admittedly provides quite a broad berth here. Sev-
eral professional groups like the Computer Science
Teachers Association and nonprofi ts like Shodor
have developed academic standards and instructional
activities to make computational thinking more ac-
cessible for K-12 education. Programming has in-
variably played a role in all proposed curricula. Yet
while programming fi gures prominently, no single
programming language is deemed best by all pro-
ponents. Whether the language is Java/Java Script,
Python, C/ C++, HTML or introductory languages
like Scratch and Alice, teaching the underlying con-
cepts conveyed by the language — not the language
itself — is what’s relevant.

So who is to say that teaching programming in
these languages will have any greater success than
what we witnessed in the 1980s with Logo’s and Pas-
cal’s relatively brief foray into schools?

The answer, we argue, is that children have al-
ready been using code to create and share. Over
the past decade, a plethora of youth-generated web
sites have emerged committed to making and shar-
ing programmable media online, be it video games,
interactive art projects, or digital stories. Inher-
ently do-it-yourself (DIY) in nature, web sites such
as Newgrounds, Planet Kodu, Scratch Online, and
Looking Glass (to name a few) encourage youth pro-
gramming not so much as a learned discipline but
as opportunities to create and share online. Within
this DIY ethos of individual endeavor mixed with
group feedback and collaboration, we see three key
shifts in how youth are now learning computer pro-
gramming:

V95 N1 kappanmagazine.org 63

Comments?
Like PDK at www.
facebook.com/pdkintl

64 Kappan September 2013

test takers, yet only 21% of those who took the
AP computer science exam in 2011 were female,
and only 29 of the test takers nationwide that year
were black — less than 1% of the total.

In the 1990s and even in the early 2000s, these
longstanding inequities were widely attributed to
the digital divide. Much energy in the 1990s focused
on providing access to computers, not curricula or
pedagogy, with initiatives such as Net Day dedi-
cated entirely to bringing computers into schools
and connecting them to the Internet. Although such
initiatives did some good addressing the access issue,
there remained what media scholar Henry Jenkins
(2006) called the “participation gap” when it came
to children’s usage of digital media in creative and
critical ways.

Debunking the notion that access alone would
address the equity issue, technology educator Mark
Warschauer and Tina Matuchniak (2010) compared
two schools with the same number of computers but
in starkly different neighborhoods in terms of so-
cioeconomics. While students had equal access to

computers in both schools, what was taught and what
students learned in school differed greatly. Students
in the upper socioeconomic neighborhood learned
to work creatively and collaboratively with comput-
ers, at times even programming, while students in
the low-income community were groomed for word
processing and simply learning how to technically
operate the machinery.

Participation in computing is not only about hav-
ing access but also having quality curricula and peda-
gogy. Such quality can occur when computer pro-
gramming allows children to produce, collaborate,
and repurpose content that is personally meaningful.
Focusing on computational thinking would remedy
the lack of engaging curricula in K-12 technology
courses and teach children the concepts and skills
to solve problems algorithmically. Computational
participation meanwhile focuses on the pedagogical
practices and perspectives needed to meaningfully
contribute in wider social networks, including but
not limited to schooling. It is here, within the wider

Getting to computational participation

Who is actually participating computationally is
a whole other story. The three shifts above are hap-
pening largely outside K-12 schools. Within schools,
computer science education remains resolutely top
down, focusing on instilling abstract principles be-
fore any direct application occurs. Within upper-
level high school courses, such as Computer Science
Principles, leading with abstraction is understand-
able given the breadth of topics to be covered. But the
near total lack of computational participation in any
earlier, introductory technology-based coursework
means few students are even considering computer
science principles, much less encountering com-
puter science in their K-12 education.

The numbers support this. Only 2,100 of some
42,000 high schools in the U.S. offer an AP com-
puter science course (College Board, 2012). The
number of introductory computer science courses
has decreased by 17% since 2005. Such a drop
is quite literally inexcusable given the Bureau of
Labor Statistics’ (2012) consistent listing of com-
puter science-related jobs among the fastest grow-
ing professions in the country with over 4 million
new positions expected by 2020. Gender and racial
disparity in computer science represents another
significant hurdle. Women make up 56% of all AP

64 Kappan September 2013

GENDER AND RACIAL DISPARITY IN COMPUTER SCIENCE REPRESENTS A

SIGNIFICANT HURDLE. LESS THAN 1% OF AP COMPUTER SCIENCE EXAM TEST

TAKERS IN 2011 WERE BLACK AND ONLY 21% WERE FEMALE.

Learning with technology has moved
beyond the question of access to a
question of what one is making and
what one is sharing with computers.

V95 N1 kappanmagazine.org 65

outweighs group dynamic and collaborative effort
in terms of academic achievement. Web 2.0 has
taught us the importance of collaboration in facili-
tating more creative and cost-effective solutions to
problems. Access to participation and collaboration
in communities of programming is key to learning
fundamental concepts and practices. Learning to
program is also about learning to participate in the
many digital publics and vice versa.

While only a few of us will become computer sci-
entists who will write the code and design the systems
that undergird much of our daily life, learning, and
leisure, many will encounter the need for some form
of programming at some point in our lives. All of us
are and will remain users of digital technologies and
thus will need at times to be able to critically and
constructively examine designs and decisions that
went into making them. In terms of the magnitude
of what any literacy affords the individual, Paulo
Freire estimated that “reading the word is reading
the world.” We see reading code very much about
reading today’s world in terms of understanding and
having the opportunity to remake it. Schools, their
leaders, teachers, and students play a critical role in
realizing this opportunity. K

References

Bureau of Labor Statistics. (2012). Employment projections

2010-20. www.bls.gov/emp/

College Board. (2012). AP course audit. https://apcourseaudit.

epiconline.org/ledger/search.php

Collins, A. & Halverson, R. (2009). Rethinking education in the

age of technology. New York, NY: Teachers College Press.

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A

review of the state of the fi eld. Educational Researcher, 42 (2),

59-69.

Jenkins, H., Clinton, K., Purushotma, R., Robison, A.J., &

Weigel, M. (2006). Confronting the challenges of participatory

culture: Media education for the 21st century. Chicago, IL:

MacArthur Foundation.

Kafai, Y.B. & Peppler, K.A. (2011). Youth, technology, and

DIY: Developing participatory competencies in creative media

production. Review of Research in Education, 35, 89-119.

Warschauer, M. & Matuchniak, T. (2010). New technology

and digital worlds: Analyzing evidence of the equity in access,

use and outcomes. Review of Research in Education, 34 (1),

179-225.

Wing, J.M. (2006). Computational thinking. Communications

of the ACM, 49 (3), 33-35.

network of creative and critical thinkers, that educa-
tors can set new academic and social norms for what
it means to meaningfully use technology.

Conclusion

Learning with technology has moved beyond the
question of access to a question of what one is mak-
ing and what one is sharing with computers. Mov-
ing from the digital divide to the participation gap
has become the driving force toward what we call
computational participation. Of course, incorpo-
rating computational participation will be no small
step for schools, where individual achievement far

V95 N1 kappanmagazine.org 65
Thinkstock/iStockphoto

All students need to know not only
about programming but what it means
to think more systematically in order
to more effi ciently solve all types of
problems.

